Dynamic Flight Plan Design for UAS Remote Sensing Applications
نویسندگان
چکیده
The development of Flight Control Systems (FCS) coupled with the availability of other Commercial Off-The Shelf (COTS) components is enabling the introduction of Unmanned Aircraft Systems (UAS) into the civil market. UAS have great potential to be used in a wide variety of civil applications such as environmental applications, emergency situations, surveillance tasks and more. In general, they are specially well suited for the so-called D-cube operations (Dirty, Dull or Dangerous). Current technology greatly facilitates the construction of UAS. Sophisticated flight control systems also make them accessible to end users with little aeronautical expertise. However, we believe that for its successful introduction into the civil market, progress needs to be made to deliver systems able to perform a wide variety of missions with minimal reconfiguration and with reduced operational costs. Most current flight plan specification mechanisms consist in a simple list of waypoints, an approach that has important limitations. This paper proposes a new specification mechanism with semantically richer constructs that will enable the end user to specify more complex flight plans. The proposed formalism provides means for specifying iterative behavior, conditional branching and other constructs to dynamically adapt the flight path to mission circumstances. Collaborating with the FCS, a new module on-board the UAS will be in charge of executing these plans. This research also studies how the proposed flight plan structure can be tailored to the specific needs of remote sensing. For these type of applications well structured and efficient area and perimeter scanning is mandatory. In this paper we introduce several strategies focused to optimize the scanning process for tactical or mini UAS. The paper also presents a prototype implementation of this module and the results obtained in simulations.
منابع مشابه
Hardware Design of a Small UAS Helicopter for Remote Sensing Operations
This paper presents the hardware design and integration process employed to develop an Unmanned Aircraft System (UAS) helicopter. The design process evolves from the bare airframe (without any electronics), to become a complete and advanced UAS platform for remote sensing applications. The improvements, design decisions and justifications are described throughout the paper. Two airframes have b...
متن کاملAn Architecture for the Seamless Integration of UAS Remote Sensing Missions
Unmanned Aerial Systems (UAS) are slowing becoming efficient platforms that can be applied in scientific/commercial remote sensing applications. UAS may offer interesting benefits in terms of cost, flexibility, endurance, etc. On the other side, the complexity of developing a full UAS-system is currently limiting its practical application. Currently, only large organizations like NASA or NOAA h...
متن کاملThe Use of Unmanned Aerial Systems in Marine Mammal Research
Unmanned aerial systems (UAS), commonly referred to as drones, are finding applications in several ecological research areas since remotely piloted aircraft (RPA) technology has ceased to be a military prerogative. Fixed-wing RPA have been tested for line transect aerial surveys of geographically dispersed marine mammal species. Despite many advantages, their systematic use is far from a realit...
متن کاملPoppy Crop Height and Capsule Volume Estimation from a Single UAS Flight
The objective of this study was to estimate poppy plant height and capsule volume with remote sensing using an Unmanned Aircraft System (UAS). Data were obtained from field measurements and UAS flights over two poppy crops at Cambridge and Cressy in Tasmania. Imagery acquired from the UAS was used to produce dense point clouds using structure from motion (SfM) and multi-view stereopsis (MVS) te...
متن کاملFPGA Implementation of JPEG and JPEG2000-Based Dynamic Partial Reconfiguration on SOC for Remote Sensing Satellite On-Board Processing
This paper presents the design procedure and implementation results of a proposed hardware which performs different satellite Image compressions using FPGA Xilinx board. First, the method is described and then VHDL code is written and synthesized by ISE software of Xilinx Company. The results show that it is easy and useful to design, develop and implement the hardware image compressor using ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009